Errata

Correlations of dietary patterns with prostate health

By M. Stacewicz-Sapuntzakis et al., vol. 52, issue 1, pp. 114–130

DOI: 10.1002/mnfr.200600296

Table 1 is corrected as follows. The term "Phytanic and pristanic acid" appears under "Negative effects (not recommended)", not under "Positive effects (recommended foods)" as originally printed.

Table 1. Provisional dietary recommendations for the maintenance of prostate health

Positive effects (recommended foods)	Negative effects (not recommended)
Energy restriction to maintain ideal weight Low-fat diet Marine fish oils N-3 fatty acids Fish Vitamin D (diet and sunlight exposure) Cereals (whole grains, rye bran) Soy products Fruits and vegetables Antioxidant-rich colorful fruits and vegetables (carotenoids, anthocyanins) Tomatoes and tomato products Onions and garlic Cruciferous vegetables Hot chili peppers and turmeric Berries and pomegranate juice Wine, grape seed and hops extracts Brazil nuts and mushrooms Tea (green and black)	Excess energy intake resulting in obesity High-fat diet Animal fat, saturated fat N-6 fatty acids Phytanic and pristanic acid High meat intake (red meat) Processed and overcooked meat High intake of dairy foods >2 g calcium/day Added sugars

Phenolic compounds: Evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms

By C.-L. Hsu and G.-C. Yen, vol. 52, issue 1, pp. 53–61

DOI: 10.1002/mnfr.200700393

In the text, page 57, left column, lines 8–13 should read: "Niho *et al.* [102] reported that intake of gallic acid (119 mg/kg/day) for 13 wk is determined to be a NOAEL in male rats. Hasumura *et al.* [101] reported that intake of rutin for 13 wk is determined to be a NOAEL and the no-observed-effect levels (NOEL) in male and female Wistar rats are 539 and 3227 mg/kg/day, respectively.

In addition the reference numbers in Tables 2, 3 and 4 are corrected as follows:

Table 2. Effect of phenolic compounds on 3T3-L1 pre-adipocytes

Compounds	Dose (Duration)	Results	Reference
Chlorogenic acid	0-250 μM (72 h)	Caused cell cycle arrest in the G₁ phase	[47]
o-Coumaric acid	0-250 μM (72 h)	Caused cell cycle arrest in the G ₁ phase	[47]
p-Coumaric acid	0–250 μM (72 h)	Caused cell cycle arrest in the G ₁ phase	[47]
EGCG	0–400 μM (48 h)	Induction of cell apoptosis	[51]
EGCG	$0-100 \mu M (24-48 h)$	Caused cell cycle arrest in the G₁ phase	[48]
Esculetin	200 μM (48 h)	Induction of cell apoptosis	[52]
Gallic acid	0-250 μM (0-72 h)	Induction of cell apoptosis	[47]
Gallic acid	0-50 μM (0-12 h)	Induces apoptosis <i>via</i> Fas- and mitochondria-mediated pathway	[54]
Quercetin	0-250 μM (0-72 h)	Induction of cell apoptosis	[53]
Naringenin	0-100 μM (0-48 h)	Inhibition of cell proliferation	[50]
	· · · · · · · · · · · · · · · · · · ·	F	[]

